叶嵎林504

姓名:叶嵎林
职称:副教授
办公室:学院附一楼
研究方向:Navier-Stokes及相关流体方程
教育背景:
2013.09-2016.07, 博士, 首都师范大学, 应用数学
2010.09-2013.07, 硕士, 首都师范大学, 应用数学
2005.09-2009.07, 学士, 南开大学, 数学与应用数学
工作经历:
2021.06-至今, 河南大学, 副教授
2016.07-2021.05, 河南大学, 讲师
代表性学术论文:
[1] ; ; Energy and helicity conservation in the incompressible ideal flows. 1357–1377.
[2] ; Energy equality of weak solutions to the Navier-Stokes system in Lorentz spaces. Paper No. 95, 14 pp.
[3] ; ; Four-fifths laws in incompressible and magnetized fluids: Helicity, energy and cross-helicity. Paper No. 134655, 22 pp.
[4] ; ; Energy equality criteria in the Navier-Stokes equations involving the pressure. Paper No. 14, 17 pp.
[5] ; ; On energy conservation of weak solutions to the α-type Euler models. Paper No. e202300406, 22 pp.
[6] ; ; Analytical validation of the helicity conservation for the compressible Euler equations. Paper No. 23, 23 pp.
[7] ; Energy conservation for the compressible Euler equations and elastodynamics. Paper No. 10, 19 pp.
[8] ; ; On two conserved quantities in the inviscid electron and Hall magnetohydrodynamic equations. Paper No. 113668, 15 pp.
[9] ; ; Energy equality for the isentropic compressible Navier-Stokes equations without upper bound of the density. 285–313.
[10] ; A note on energy and cross-helicity conservation in the ideal magnetohydrodynamic equations. 12871–12882.
[11] ; ; ; Energy dissipation of weak solutions for a surface growth model. 432–458.
[12] ; ; On energy and magnetic helicity equality in the electron magnetohydrodynamic equations. Paper No. 118, 17 pp.
[13] ; ; ; On the energy and helicity conservation of the incompressible Euler equations. Paper No. 63, 28 pp.
[14] ; ; Refined conserved quantities criteria for the ideal MHD equations in a bounded domain. 1673–1687.
[15] ; ; Calderón-Zygmund theory in Lorentz mixed-norm spaces and its application to compressible fluids. 5288–5304.
[16] ; ; Energy conservation and Onsager's conjecture for a surface growth model. 299–309.
[17] ; ; Energy conservation for the generalized surface quasi-geostrophic equation. Paper No. 70, 15 pp.
[18] ; ; Energy conservation of weak solutions for the incompressible Euler equations via vorticity. 254–279.
[19] ; ; The role of density in the energy conservation for the isentropic compressible Euler equations. Paper No. 061504, 16 pp.
[20] ; ; Gagliardo-Nirenberg inequalities in Lorentz type spaces. Paper No. 35, 30 pp.
[21] ; A general sufficient criterion for energy conservation in the Navier-Stokes system. 9268–9285.
[22] ; ; On the regularity criteria for the three-dimensional compressible Navier-Stokes system in Lorentz spaces. 4763–4774.
[23] ; ; Energy conservation of the compressible Euler equations and the Navier-Stokes equations via the gradient. Paper No. 113219, 18 pp.
[24] ; ; Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum. 551–571.
[25] ; ; Global classical solutions to the viscous two-phase flow model with Navier-type slip boundary condition in 2D bounded domains. Paper No. 85, 34 pp.
[26] ; ; ; On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces. 671–689.
[27] ; ; On non-resistive limit of 1D MHD equations with no vacuum at infinity. 702–725.
[28] ; Energy conservation for weak solutions to the 3D Navier-Stokes-Cahn-Hilliard system. Paper No. 107587, 6 pp.
[29] ; ; Global strong solutions to Cauchy problem of 1D non-resistive MHD equations with no vacuum at infinity. Paper No. 7, 22 pp.
[30] ; ; Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature. 1895–1916.
[31] ; On the free boundary problem of 1D compressible Navier-Stokes equations with heat conductivity dependent of temperature. 2039–2057.
[32] ; ; Global strong solutions to the Cauchy problem of 1D compressible MHD equations with no resistivity. 851–873.
[33] ; The large time behavior of the free boundary for one dimensional compressible Navier-Stokes equations. 071509, 7 pp.
[34] ; Global strong solution to the Cauchy problem of 1D compressible MHD equations with large initial data and vacuum. Paper No. 38, 20 pp.
[35] ; Global weak solutions to 3D compressible Navier-Stokes-Poisson equations with density-dependent viscosity. 180–211.
[36] Global classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with density-dependent viscosity. 1419–1432.
[37] Global classical solution to 1D compressible Navier-Stokes equations with no vacuum at infinity. 776–795.
[38] ; ; Global classical solution of the Cauchy problem to 1D compressible Navier-Stokes equations with large initial data. 311–350.
[39] ; ; Local well-posedness to the Cauchy problem of the 3-D compressible Navier-Stokes equations with density-dependent viscosity. 851–871.
科研项目:
1. 河南省青年骨干教师培养计划,2024-2027,3万,主持,在研;
2. JKW重点专项,****,2023-2025,150万,主持,已结项;
3. 河南省自然科学基金面上项目,2023.01-2024.12,主持,已结项;
4. 中国博士后科学基金第67批面上资助(二等),2020/01-2021/12,8万元,主持,已结项;
5. 河南省博士后基金面上资助(二等),2020/07-2022/06,8万元,主持,已结项;
6. 2020年国家博士后国际交流计划学术交流项目,2万元,2020/01-2020/12,主持,已结项;
7. 国家自然科学基金青年项目(11701145),2018/01-2020/12,23万元,主持,已结项;
主讲课程:
工程微积分,高等数学,数理方程
荣誉与奖励:
2025年,河南省教育厅优秀科技论文奖二等奖,1/1;
2025年,河南省教育厅科技成果奖一等奖,4/4;
2024年,河南省青年骨干教师培养计划;
2023年,河南省教育厅优秀科技论文奖一等奖,3/3;
2022年,河南省教育厅优秀科技论文奖二等奖,3/3;
2021年,河南省教育厅优秀科技论文奖二等奖,1/1;
2020年,河南省教育厅优秀科技论文奖一等奖,1/1;
2020年,河南省教育厅优秀科技论文奖二等奖,1/1;
2018年,河南大学教学质量竞赛二等奖。
